
Dotty => Scala3
What you need to know going into 2020

about me

• Working at Accenture for 11+
years

• First exposure to Scala via
Spark almost 4 years ago

• Currently wrestling with
Monads — far from an expert,
but a passionate life-long
learner…

Agenda

• A quick history of Dotty

• Highlight on new capabilities

• Notable changes (how your code will look different)

• Current IDE support

• Impacts on tooling and libraries

• Planning your own migration; cross-compiling to 2.x compat

libraries

• Discussion and controversy: is this the new Python 3?

What is Dotty?
Dependent Object Types (DOT)

“DOT normalizes Scala’s type system by
unifying the constructs for type members

and by providing classical intersection and
union types which simplify greatest lower

bound and least upper bound
computations.”

• Started 6+ years ago “as a research
project to explore what a new Scala could
look like”

• Intended to be Scala 3

What is Tasty
• Tasty is the high-level interchange (serialization) format for Scala 3

• Represents the syntactic structure of programs and also contains complete
information about types and positions

• The compiler uses it to support separate compilation

• The foundation for a new generation of reflection-based macros: it replaces the
original def macros and the scala.reflect infrastructure.

Important Use Cases:

• Language servers for IDEs (via LSP)

• Cross Binding -> Escape the curse of binary compatibility

(Typed Abstract Syntax Trees)

Tasty Demo

• .tasty files are now co-located with .class files

• Are included in published JARs

• Can be explored with “dotc -print-tasty path-to/foo.tasty”

• Sizes are approximately same size as class files

• Seems to be sort of equivalent to old C object files

Borrowed from Adriaan Moors presentation

Original
Roadmap:

Goal of Scala 2.13 is only about
stdlib changes, intended as a

bridge for Dotty (which uses the
same stdlib) to ensure

compatibility.

Goal of Scala 2.14 was to compile
to TASTY to enable binary

compatibility.

Scala 2.15 would be considered if
needed to complete the migration

Notable Recent Events

• 18 December: New roadmap announcement that Scala 2.14 is cancelled and
2.13 will be the last 2.x version. Goal: first RC by end of 2020

• 20 December: Dotty 0.21.0-RC1 released and announced as Feature Complete
(no new features, but syntax may evolve)

Cool New Features

Union Types Intersection Types
trait A
trait B
val x: A & B

val user: Member | Email
val safe: String | Null

• Replaces “with” and represents the new
model of multiple inheritance

• If A & B both define a member “foo” of
different types, then A & B will have a
member “foo” whose types is the
intersection.

Real Enums!
enum Color {
 case Red, Green, Blue
}

enum Color(val rgb: Int) {
 case Red extends Color(0xF0000)
 case Green extends Color(0x00FF00)
 case Blue extends Color(0x0000FF)
}

scala> val red = Color.Red
val red: Color = Red
scala> red.ordinal
val res0: Int = 0

scala> Color.valueOf("Blue")
val res0: Color = Blue
scala> Color.values
val res1: Array[Color] = Array(Red, Green, Blue)

• You can add definitions/
members to an enum just like
a class

• It’s also possible to add an
explicit companion object

Enums Powerful Enough for
Algebraic Data Types!

enum Option[+T] {
 case Some(x: T)
 case None
}

enum Option[+T] {
 case Some(x: T) extends Option[T]
 case None extends Option[Nothing]
}

Extension Methods

implicit class StringOps(s: String)
{
 def addHi: String = s"Hi, $s"
}

“Bob".addHi

val res1: String = Hi, Bob

def (s: String) addHello: String =
 s"Hello, $s"

“Bob".addHello

val res1: String = Hello, Bob

Reducing the need for implicit classes

Trait parameters
trait Animal(val species: String)

trait Voice(val sound: String)

case class Pet(val name: String) extends Animal("canine") with Voice("Woof")

val myDog = Pet("Nutmeg")

scala> s"This is ${myDog.name} who is a ${myDog.species} and goes ${myDog.sound}"
val res1: String = This is Nutmeg who is a canine and goes Woof

Generic Tuples (22)

(a, b, c) == (a, (b, (c, ()))

Type Lambdas
Lets you express a higher-minded type directly without a type definition

Two simple examples from Functional Programming for Mortals:

Kind Projection:
trait Foo[F[?]]
object FooEitherString extends Foo[Either[String,_]]
object FooEitherString extends Foo[[X] =>> Either[String,X]]

No more Id type alias for things like mocking
trait Echoable[F[?]] {
 def read: F[String]
 def write(msg: F[String]): F[Unit]
}

object Mock extends Echoable[_] // or Echoable[[X] =>> X]
{ def read: String = "hello"
 def write(msg: String): Unit = ()
}

New “Quiet” (Indentation) Syntax

How your code will
look different

(Not much)

Partial List of Changes
Package Objects

Deprecated (Still around for Scala 3.0, but dropped after that.)
The reason is a lot more things can be written now at the top
level.

Symbol Literals
Removed, but symbol ‘Goober can still be represented as
Symbol(“Goober”). Symbol class will be deprecated in the
future.

Wildcard Arguments
in Types

F[_] should be rewritten as F[?], so that F[_] will become
shorthand for type lambda [X] =>> C[X]. Both supported in
Scala 3.0 unless -strict setting is in place.

Implicit Conversions Requires an import scala.language.implicitConversions,
intended to discourage abuses of the feature.

Implicits
Implicits have a lot of challenges. We felt there should be a concerted effort to get out the

good parts of implicits and remove the traps and the pitfalls as much as possible. And
part of the answer for that—not all of it but part of the answer for that is syntax.”

Martin Odersky - A Tour of Scala 3 from Scala Days 2019

Being very powerful, implicits are easily over-used and mis-used… Conditional implicit
values are a cornerstone for expressing type classes, whereas most applications of implicit

conversions have turned out to be of dubious value. The problem is that many
newcomers to the language start with defining implicit conversions since they are easy to

understand and seem powerful and convenient.

Dotty Documentation - Contextual Abstractions Overview

implicit => given

• Terminology is freshly minted. (July 2019 slides had
“delegate” instead) Also note “implicitly” => “summon”

• Effort made to disambiguate implicit instances, implicit
parameters and implicit conversions

• Some simplification (less need to put in companion
objects; instances can be anonymous)

• Fewer restrictions for implicit parameters (doesn’t have to
be last curried group, multiple clauses allowed, etc.) based
on previous pain points

Impacts on Tools and
Libraries (small sample)

scalafix Strategic tool for code migration of Scala 2 to Scala 3 conventions, but
I don’t see any examples so might be in-progress.

simulacrum Depends heavily on deprecated version of Scala macros. No migration
path.

cats Heavy dependency on simulacrum, but simulacrum-scalefix project is
experimenting on migrating this. Overall, support seems active.

zio Tests compilation on nightly Dotty builds. (Haven’t tried any examples.)

scalatest ScalaTest 3.1.0 only works with OLD Dotty 0.17 (Released back in July.
Current version is 0.21) Dotty g8 templates use JUnit.

Planning your Migration

• Scala 3 and Scala 2 share the same standard library.

• With some small tweaks it is possible to cross-build code for both Scala 2 and 3.
We will provide a guide defining the shared language subset that can be compiled
under both versions.

• The Scala 3 compiler has a -language:Scala2 option that lets it compile most
Scala 2 code and at the same time highlights necessary rewritings as migration
warnings.

• “The compiler can perform many of the rewritings automatically using a  
-rewrite option”

Planning your Migration
cont.

If your build contains dependencies that have only been published for Scala 2.x, you
may be able to get them to work on Dotty by replacing:

libraryDependencies	+=	"a"	%%	"b"	%	"c"	

with

libraryDependencies	+=	("a"	%%	"b"	%	"c").withDottyCompat(scalaVersion.value)	

“This will have no effect when compiling with Scala 2.x, but when compiling with Dotty this will
change the cross-version to a Scala 2.x one. This works because Dotty is currently retro-compatible
with Scala 2.x.”

Is this Python 3
(or Perl 6)?

Probably

