Dotty => Scala3

What you need to know going into 2020

about me

'|I E'! *H =

o |

[

 oBE

ey

F=

Py = —
c

e Working at Accenture for 11+
years

e First exposure to Scala via
Spark almost 4 years ago

e Currently wrestling with
Monads — far from an expert,
but a passionate life-long
learner...

Agenda

A quick history of Dotty

Highlight on new capabillities

Notable changes (how your code will look different)
Current IDE support

Impacts on tooling and libraries

Planning your own migration; cross-compiling to 2.x compat
libraries

Discussion and controversy: is this the new Python 37?

What is Dotty?

Dependent Object Types (DOT)

“DOT normalizes Scala’s type system by
unifying the constructs for type members
and by providing classical intersection and
union types which simplify greatest lower
bound and least upper bound
computations.”

Started 6+ years ago “as a research
project to explore what a new Scala could
look like”

Intended to be Scala 3

Dependent Object Types

Towards a foundation for Scala’s type system

Nada Amin

Adriaan Moors

EPFL

Martin Odersky

first.last@epfl.ch

Abstract

We propose a new type-theoretic foundation of Scala and languages
like it: the Dependent Object Types (DOT) calculus. DOT models
Scala’s path-dependent types, abstract type members and its mix-
ture of nominal and structural typing through the use of refinement
types. The core formalism makes no attempt to model inheritance
and mixin composition. DOT normalizes Scala’s type system by
unifying the constructs for type members and by providing clas-
sical intersection and union types which simplify greatest lower
bound and least upper bound computations.

In this paper, we present the DOT calculus, both formally and
informally. We also discuss our work-in-progress to prove type-
safety of the calculus.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Abstract data types, Classes and objects, polymor-
phism; D.3.1 [Formal Definitions and Theory]: Syntax, Seman-
tics; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams); FE.3.3 [Studies of Program Constructs]: Object-oriented
constructs, type structure; F.3.2 [Semantics or Programming Lan-
guages]: Operational semantics

General Terms Languages, Theory, Verification

Keywords calculus, objects, dependent types

1. Introduction

A scalable programming language is one in which the same con-
cepts can describe small as well as large parts. Towards this goal,
Scala unifies concepts from object and module systems. An es-
sential ingredient of this unification is objects with type members.
Given a stable path to an object, its type members can be accessed
as types, called path-dependent types.

well as its mixture of nominal and structural typing through the
use of refinement types. Compared to previous approaches [5, 14],
we make no attempt to model inheritance or mixin composition.
Indeed we will argue that such concepts are better modeled in a
different setting.

The DOT calculus does not precisely describe what’s currently
in Scala. It is more normative than descriptive. The main point
of deviation concerns the difference between Scala’s compound
type formation using with and classical type intersection, as it is
modeled in the calculus. Scala, and the previous calculi attempting
to model it, conflates the concepts of compound types (which in-
herit the members of several parent types) and mixin composition
(which build classes from other classes and traits). At first glance,
this offers an economy of concepts. However, it is problematic be-
cause mixin composition and intersection types have quite different
properties. In the case of several inherited members with the same
name, mixin composition has to pick one which overrides the oth-
ers. It uses for that the concept of linearization of a trait hierarchy.
Typically, given two independent traits 73 and 75 with a common
method m, the mixin composition 77 with 7% would pick the m in
T5, whereas the member in 7 would be available via a super-call.
All this makes sense from an implementation standpoint. From a
typing standpoint it is more awkward, because it breaks commuta-
tivity and with it several monotonicity properties.

In the present calculus, we replace Scala’s compound types
by classical intersection types, which are commutative. We also
complement this by classical union types. Intersections and unions
form a lattice wrt subtyping. This addresses another problematic
feature of Scala: In Scala’s current type system, least upper bounds
and greatest lower bounds do not always exist. Here is an example:
given two traits A and B, where each declares an abstract upper-
bounded type member T,

trait A { tvype T<- A }

What is Tasty

(Typed Abstract Syntax Trees)

e Tasty is the high-level interchange (serialization) format for Scala 3

e Represents the syntactic structure of programs and also contains complete
information about types and positions

e The compiler uses it to support separate compilation

e The foundation for a new generation of reflection-based macros: it replaces the
original def macros and the scala.reflect infrastructure.

Important Use Cases:

e |Language servers for IDEs (via LSP)

e Cross Binding -> Escape the curse of binary compatibility

Tasty Demo

tasty files are now co-located with .class files

Are included in published JARs

Can be explored with “dotc -print-tasty path-to/foo.tasty”
Sizes are approximately same size as class files

Seems to be sort of equivalent to old C object files

The Tasty Vision

IDE .class (Java 8)

scala (2 X) I LSF,/

— 5 .class (Java 11)

N

.scala (3.x)

macros
analyzers .Out
optimizers

This is open source work, depends on community’s contributions.
- Roadmap is tentative, no promises:

2016 |
Scala 2.12 | = backend, classpath handling
—3
2017 stdlib Dotty 0.1
Goal of Scala 2.13 is only about collections “MVP” = minimal
stdlib changes, intended as a / \ l viable
bridge for Dotty (which uses the orototype
same stdlib) to ensure 2018 |Scala 2.13
compatibility. Dotty 0.x releases
l TASTY,
Goal of Scala 2.14 was to compile middlM
to TASTY to enable binary Scala2.14| =
compatibility. l
. e, >
Scala 2.15 would be considered if mlgrat|on » |Scala3.0

needed to complete the migration Scala 2.157

Borrowed from Adriaan Moors presentation

Notable Recent Events

e 18 December: New roadmap announcement that Scala 2.14 is cancelled and
2.13 will be the last 2.x version. Goal: first RC by end of 2020

e 20 December: Dotty 0.21.0-RC1 released and announced as Feature Complete
(ho new features, but syntax may evolve)

2016

Scala 2.12 wath BNGINg
s stdlib Dotty 0.1
collections ‘MVP” = minimal
1, viable
2018 |Scala?2.13 orototype

Dotty 0.x releases

l TASTY,

iddle en
> ke

|

Scala 3.0

Cool New Features

Union Types Intersection Types

trait A
trait B
val x: A & B

val user: Member | Email
val safe: String | Null

® Replaces “with” and represents the new
model of multiple inheritance

e If A & B both define a member “foo” of
different types, then A & B will have a
member “foo” whose types is the
intersection.

Real Enums!

enum Color {
case Red, Green, Blue

}

enum Color(val rgb: Int) { * You can add definitions/
case Red extends Color(0OxF0000) . .
case Green extends Color(Ox00OFF00) members to an enum JUSt like
case Blue extends Color(0x0000FF) 3 class

}

* |t’s also possible to add an
scala> val red = Color.Red

val red: Color = Red explicit companion object

scala> red.ordinal
val resO: Int = 0

scala> Color.valueOf("Blue™)

val res0: Color = Blue

scala> Color.values

val resl: Array[Color] = Array(Red, Green, Blue)

Enums Powerful Enough for
Algebraic Data Types!

enum Option[+T] { enum Option[+T] {
case Some(x: T) ﬁ case Some(x: T) extends Option[T]
case None case None extends Option[Nothing]

} }

Extension Methods

Reducing the need for implicit classes

implicit class StringOps(s: String)
{ def (s: String) addHello: String =
def addHi: String = s"Hi, $s" s"Hello, $s"

}

“Bob" .addHello
“Bob" .addH1

val resl: String = Hello, Bob
val resl: String = Hi, Bob

Trait parameters

trait Animal(val speclies: String)

trait Voice(val sound: String)

case class Pet(val name: String) extends Animal("canine") with Voice('"Woof")

val myDog Pet("Nutmeg")

scala> s"This 1s ${myDog.name} who 1s a ${myDog.species} and goes ${myDog.sound}"
val resl: String = This 1s Nutmeg who 1s a canine and goes Woof

Generic Tuples M

(a, b, c) == (a, (b, (c, ()))

Type Lambdas

Lets you express a higher-minded type directly without a type definition

Two simple examples from Functional Programming for Mortals:

Kind Projection:

tralt Foo[F[?]]

object FooEitherString extends Foo[Either[String, _]]

object FooEitherString extends Foo[[X] =>> Either[String, X]]

No more Ild type alias for things like mocking
trait Echoable[F[?]] {

def read: F[String]
def write(msg: F[String]): F[Unit]
}

object Mock extends Echoable[_] // or Echoable[[X] =>> X]
{ def read: String = "hello"

def write(msg: String): Unit ()
}

New “Quiet” (Indentation) Syntax

1 package example

2

3 trait Ord[T]

4 def compare(x: T, y: T): Int

5 def (x: T) < (y: T) = compare(x, y) < 0

6 def (x: T) > (y: T) = compare(x, y) > 0

.

8 given Ord[Int]

9 def compare(x: Int, y: Int) =

10 if (x <y) -1 else if (x > y) +1 else 0
11

12 given [T]: (ord: Ord[T]) => Ord[List[T]]

13 def compare(xs: List[T], ys: List[T]): Int = (xs, ys) match
14 case (Nil, Nil) => 0

15 case (Nil,) => -1

16 case (_, Nil) => +1

17 case (x :: xs1, y :: ysl) =>

18 val fst = ord.compare(x, y)

19 if (fst != 0) fst else compare(xsl, ys1)

How your code will
look different

(Not much)

Partial List of Changes

Deprecated (Still around for Scala 3.0, but dropped after that.)

Package Objects The reason is a lot more things can be written now at the top
level.

Removed, but symbol ‘Goober can still be represented as

Symbol Literals Symbol(“Goober”). Symbol class will be deprecated in the
future.

Wil rd Arauments F[_] should be rewritten as F[?], so that F[_] will become
dcara gume shorthand for type lambda [X] =>> C[X]. Both supported in

in Types Scala 3.0 unless -strict setting is in place.

Requires an import scala.language.implicitConversions,

Imp“CH: Conversions iIntended to discourage abuses of the feature.

Implicits

Implicits have a lot of challenges. We felt there should be a concerted effort to get out the
good parts of implicits and remove the traps and the pitfalls as much as possible. And
part of the answer for that—not all of it but part of the answer for that is syntax.”

Martin Odersky - A Tour of Scala 3 from Scala Days 2019

Being very powerful, implicits are easily over-used and mis-used... Conditional implicit
values are a cornerstone for expressing type classes, whereas most applications of implicit
conversions have turned out to be of dubious value. The problem is that many
newcomers to the language start with defining implicit conversions since they are easy to
understand and seem powerful and convenient.

Dotty Documentation - Contextual Abstractions Overview

Implicit => given

Terminology is freshly minted. (July 2019 slides had
“delegate” instead) Also note “implicitly” => “summon”

Effort made to disambiguate implicit instances, implicit
parameters and implicit conversions

Some simplification (less need to put in companion
objects; instances can be anonymous)

Fewer restrictions for implicit parameters (doesn’t have to

be last curried group, multiple clauses allowed, etc.) based
on previous pain points

Impacts on Tools and
Libraries (small sample)

. Strategic tool for code migration of Scala 2 to Scala 3 conventions, but
scalafix , . .
| don’t see any examples so might be in-progress.

: Depends heavily on deprecated version of Scala macros. No migration
simulacrum oath

- Heavy dependency on simulacrum, but simulacrum-scalefix project is
experimenting on migrating this. Overall, support seems active.

—Tests compilation on nightly Dotty builds. (Haven’t tried any examples.)

ScalaTest 3.1.0 only works with OLD Dotty 0.17 (Released back in July.
Current version is 0.21) Dotty g8 templates use JUnit.

scalatest

Planning your Migration

Scala 3 and Scala 2 share the same standard library.

With some small tweaks it is possible to cross-build code for both Scala 2 and 3.
We will provide a guide defining the shared language subset that can be compiled
under both versions.

The Scala 3 compiler has a —language: Scala2 option that lets it compile most
Scala 2 code and at the same time highlights necessary rewritings as migration
warnings.

“The compiler can perform many of the rewritings automatically using a
-rewrite option”

Planning your Migration
cont.

If your build contains dependencies that have only been published for Scala 2.x, you
may be able to get them to work on Dotty by replacing:

libraryDependencies += "a" %% 'b" % "C

with

libraryDependencies += ("a" %% "b" % "c").withDottyCompat(scalaVersion.value)

“This will have no effect when compiling with Scala 2.x, but when compiling with Dotty this will
change the cross-version to a Scala 2.x one. This works because Dotty is currently retro-compatible

with Scala 2.x.”

Is this Python 3
(or Perl 6)?

Probably

