
Spark 101 for Scala People
Murray Todd Williams (murraytodd@gmail.com)
11 June 2020 - Austin Scala Enthusiasts Meetup

http://www.murraywilliams.com/2020/06/spark-101-for-scala-users/

about me
• Working for Accenture for 12 years
• First exposure to Scala via Spark

about 4 years ago
• Currently wrestling with learning Cats

and understanding Applicatives—far
from an expert, but a passionate life-
long learner…

Agenda

• How easy it is to start playing with Spark (hands-on demo)

• Getting started (environments, prototyping, setting up SBT)

• What’s going on under the hood

• Spark RDDs vs DataFrames (and Datasets) i.e. Spark vs Spark SQL

• Partitioning

Getting Started
• Choose Cloudera vs Hortonworks flavor

• Choose cloud environment

• Provision and install

• Get data into environment

• Access Spark

• …

Getting Started

• Choose Cloudera vs Hortonworks flavor

• Choose cloud environment

• Provision and install

• Get data into environment

• Access Spark Run locally without Hadoop

Four Easy Approaches
Download and run (Mac or Linux)
Unpack tgz
cd bin
./spark-shell

Docker Spark Image
docker run --name spark -v $HOME/spark/data:/root -p 4040:4040 -it mesosphere/spark bin/spark-shell

Docker Zeppelin Image
docker run --name zeppelin -p 8080:8080 -p 4040:4040 -v $HOME/spark/data:/data -v \
 $HOME/spark/logs:/logs -v $HOME/spark/notebook:/notebook -e ZEPPELIN_NOTEBOOK_DIR='/notebook' \
 -e ZEPPELIN_LOG_DIR='/logs' -e ZEPPELIN_INT_JAVA_OPTS="-Dspark.driver.memory=4G" \
 -e ZEPPELIN_INTP_MEM="-Xmx4g" -d apache/zeppelin:0.9.0 /zeppelin/bin/zeppelin.sh

import Dependencies._

ThisBuild / scalaVersion := "2.12.11"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / organization := "com.example"
ThisBuild / organizationName := "Scala Meetup"

lazy val root = (project in file("."))
 .settings(
 name := "spark-base",
 libraryDependencies ++= Seq(scalaTest % Test, sparkCore, sparkSQL)
)

import sbt._

object Dependencies {

 val sparkVersion = "2.4.6"

 lazy val scalaTest = "org.scalatest" %% "scalatest" % "3.0.8"
 lazy val sparkCore = "org.apache.spark" %% "spark-core" % sparkVersion
 lazy val sparkSQL = "org.apache.spark" %% "spark-sql" % sparkVersion
}

build.sbt :

Dependencies.scala :

sbt console :
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder().master(“local").getOrCreate
val sc = spark.SparkContext

DEMO

Under the hood
Designed to run massively parallel tasks

• You’re not creating objects (e.g. lists, maps) but rather assembling
strategies broken into stages

• Everything is incredibly lazy

• If you’re working with RDDs (more on that in a moment), it feels like
you’re just manipulating Scala structures.

Spark vs Spark SQL

Original
Spark

RDDs
Resilient Distributed Datasets

• Original way of working
• Resembles a Scala

collection

Spark SQL
(v1.5+)

Became the
preferred

paradigm in
v2.0+

DataFrames / Datasets
• SparkSQL (typed)
• Resembles a Scala

collection

Spark Tables & SQL • Untyped (SQL in Text)
• Spark managed tables

• SparkSQL can be much faster due to the fact that SQL operations
can be optimized

• It’s pretty trivial to jump between RDDs and (SparkSQL)
DataFrames and back*

HANDS-ON DEMO

Partitioning
• In order to do parallel work, the data needs to be split into partitions

• Spark/Hadoop data files will often have scores of partitions

• Partitioning is important for joins so each worker/executer can
guarantee all records for a particular field (e.g. customer) are local
to a single partition file

• If you run out of memory, make more (smaller) partitions to break up
the problem into tiny pieces

